4.4. Pythagorean Theorem

A right-angle triangle is a triangle containing a right angle $\left(90^{\circ}\right)$. A triangle cannot have more than one right angle, since the sum of the two right angles plus the third angle would exceed the 180° total possessed by a triangle. The side opposite the right angle is called the hypotenuse (side c in the figure below). The sides adjacent to the right angle are called legs (or catheti, singular: cathetus).

Math notation for right-angle triangle

The Pythagorean Theorem states that the square of a hypotenuse is equal to the sum of the squares of the other two sides. It is one of the fundamental relations in Euclidean geometry.

$$
c^{2}=a^{2}+b^{2}
$$

Pythagorean triangle with the squares of its sides and labels

Pythagorean triples are integer values of a, b, c satisfying this equation.

Finding the Sides of a Right Angled Triangle

Example 1: Find the hypotenuse. 毗

$$
\begin{array}{rlrl}
c^{2} & =a^{2}+b^{2} & \text { |substitute for } a \text { and } b \\
c^{2} & =(9.6 m)^{2}+(2.8 m)^{2} & \\
c^{2} & =92.16 m^{2}+7.84 m^{2} & \\
c^{2} & =100 m^{2} & & \\
\sqrt{c^{2}} & =\sqrt{100 m^{2}} & \text { |take the square root o } \\
\sqrt{c^{2}} & =\sqrt{100} \sqrt{m^{2}} & \\
c & =10 m & &
\end{array}
$$

Example 2: Find the missing side b.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} & & \text { |subtract } a^{2} \text { from each side } \\
c^{2}-a^{2} & =a^{2}+b^{2}-a^{2} & & \\
c^{2}-a^{2} & =b^{2} & & \text { |switch sides } \\
b^{2} & =c^{2}-a^{2} & & \text { |substitute for } a \text { and } c \\
b^{2} & =5^{2}-3^{2} & & \\
b^{2} & =25-9=16 & & \text { |take the square root of each side } \\
\sqrt{b^{2}} & =\sqrt{16} & & \\
b & =4 & &
\end{aligned}
$$

Practice 1: Find all the missing sides in each right angle triangle.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
a^{2} & =c^{2}-b^{2} \\
a^{2} & =5^{2}-4^{2}=25-16=9 \\
\sqrt{a^{2}} & =\sqrt{9} \\
a & =3
\end{aligned}
$$

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
c^{2} & =5^{2}+12^{2}=25+144=169 \\
\sqrt{c^{2}} & =\sqrt{169} \\
c & =13
\end{aligned}
$$

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
b^{2} & =c^{2}-a^{2} \\
b^{2} & =10^{2}-6^{2}=100-36=64 \\
\sqrt{b^{2}} & =\sqrt{64} \\
b & =8
\end{aligned}
$$

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
a^{2} & =c^{2}-b^{2} \\
a^{2} & =26^{2}-24^{2}=676-576=100 \\
\sqrt{a^{2}} & =\sqrt{100} \\
a & =10
\end{aligned}
$$

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
c^{2} & =6^{2}+8^{2}=36+64=100 \\
\sqrt{c^{2}} & =\sqrt{100} \\
c & =10
\end{aligned}
$$

Challenge 1: Find x. 屠 ()

Use the Pythagorean theorem to find the base b in the larger triangle:
Given: hypotenuse : $c=26 m \quad a=10 \mathrm{~m} \quad$ Find: $b=$?

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} & & \text { |subtract } a^{2} \text { from both sides } \\
b^{2} & =(26 m)^{2}-(10 m)^{2} & & \text { |substitute values } c=26 m \text { and } a=10 m \\
b^{2} & =676 m^{2}-10 m^{2} & & \\
b^{2} & =576 m^{2} & & \\
\sqrt{b^{2}} & =\sqrt{576 m^{2}} & & \text { |take the square root of each side } \\
b & =24 m & &
\end{aligned}
$$

In the smaller triangle, the base (let's call it y) is half the base of the larger triangle.
Given: $y=\frac{1}{2} b=\frac{1}{2}(24 m)=12 m \quad a=10 m \quad$ Find: hypotenuse : $x=$?
Use the Pythagorean theorem:

$$
\begin{array}{rlrl}
c^{2} & =a^{2}+b^{2} & & \text { |substitute: } c=x, a=a \text { and } b=y \\
x^{2} & =a^{2}+y^{2} & & \text { |substitute values: } a=10 \mathrm{~m} \text { and } y=12 \mathrm{~cm} \\
x^{2} & =(10 m)^{2}+(12 m)^{2} & & \\
x^{2} & =100 m^{2}+144 m^{2} & & \\
x^{2} & =244 m^{2} & & \\
\sqrt{x^{2}} & =\sqrt{244 m^{2}} & \text { take the square root of each side } \\
x & =15.6 m & &
\end{array}
$$

Area of Right Angled Triangle

The area of a triangle is equal to one half the base multiplied by the corresponding height: $A=\frac{b h}{2}$

Example 3: Find the length of the diagonal of a rectangle that has width $a=3$ and length $b=4$.

The diagonal of a rectangle is the hypotenuse of a right-angle triangle. Use the Pythagorean Theorem.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
c^{2} & =3^{2}+4^{2}=9+16=25 \\
\sqrt{c^{2}} & =\sqrt{25} \\
c & =5 \quad \text { The length of the diagonal is } c=5 .
\end{aligned}
$$

Challenge 2: What is the length $B \boldsymbol{D}$ shown in the figure?

Points A, B, and D form the right-angle triangle with hypotenuse $B D$.
The length $A B$ equals to change in x, from -2 in $\mathrm{A}(\underline{-2},-2)$ to 3 in $\mathrm{B}(\underline{3},-2)$, since points A and B have a fixed y coordinate.

$$
A B=\Delta x=3-(-2)=3+2=5
$$

The length $A D$ equals to change in y, from -2 in $\mathrm{A}(-2, \underline{-2})$ to 4 in $\mathrm{B}(-2, \underline{4})$, since points A and B have a fixed x coordinate.

$$
A D=\Delta y=4-(-2)=4+2=6
$$

Use the Pythagorean theorem to find length $B D$, which is a hypotenuse of the right-angle triangle $B A D$.

$$
\begin{aligned}
B D^{2} & =5^{2}+6^{2}=25+36 \\
B D^{2} & =61 \\
\sqrt{B D^{2}} & =\sqrt{61} \\
B D & \approx 7.8
\end{aligned}
$$

Challenge 3: Find the area of a square whose perimeter is the same as the perimeter of the triangle shown below.

To find the perimeter of the triangle we need to find the hypotenuse, side c, first.

$$
P=a+b+c
$$

The hypotenuse c of the triangle is

$$
\begin{aligned}
c^{2} & =(6 \mathrm{~cm})^{2}+(8 \mathrm{~cm})^{2} \\
& =36 \mathrm{~cm}^{2}+64 \mathrm{~cm}^{2} \\
& =100 \mathrm{~cm}^{2}
\end{aligned}
$$

Take square root of both sides

$$
\begin{aligned}
\sqrt{c^{2}} & =\sqrt{100 \mathrm{~cm}^{2}} \\
c & =10 \mathrm{~cm}
\end{aligned}
$$

The perimeter of triangle P is the sum of the lengths of all three sides of the triangle:

$$
P=6 \mathrm{~cm}+8 \mathrm{~cm}+10 \mathrm{~cm}=24 \mathrm{~cm}
$$

Perimeters of the triangle and the square are same. If the side of the square is a, then the perimeter of the square is

$$
P=4 a
$$

Divide by 4 and switch sides

$$
a=\frac{P}{4}
$$

Substitute value for P

$$
a=\frac{24 \mathrm{~cm}}{4}=6 \mathrm{~cm}
$$

Finally, the area of the square is

$$
A_{S}=a^{2}=(6 \mathrm{~cm})^{2}=36 \mathrm{~cm}^{2}
$$

Challenge 4: Two concentric circles with the center at the origin are shown below. $A(4,3)$ is on the larger circle and $C D$ is 9 , what is the radius of the smaller circle? $:$

The radius, r_{0} of the larger circle is distance $A O$. To find this distance we use x and y coordinates of point A (right angled triangle $\triangle A B O$. Using Pythagorean theorem we can find the radius of the larger circle, r_{0} :

$$
\begin{aligned}
& r_{0}^{2}=4^{2}+3^{2} \\
& r_{0}=\sqrt{16+9}=\sqrt{25}=5
\end{aligned}
$$

Line segment $C D$ is split into $C O$ and $O D$. Furthermore, $C D=9$, and $C O$ is the radius of the larger circle, and $O D$ is the radius of the smaller circle

$$
\begin{aligned}
C D & =C O+O D \\
9 & =5+O D \\
O D & =4
\end{aligned}
$$

The radius of the smaller circle is 4 .

Challenge 5: A rectangle with the area of $3 \sqrt{2}$ is inscribed into a square with the side length of $a+b$, as shown below. Find the length of the rectangles' diagonal d, if $a: b=2 \sqrt{2}: 3$.

Let x and y be the height and the width of the rectangle, respectively. There are four isosceles triangles around the rectangle: two smaller triangles with legs of length b (top left and bottom right corners), and two larger triangles with legs of length a (top right and bottom left corners). Using the Pythagorean Theorem we can write:

$$
\begin{aligned}
x^{2} & =b^{2}+b^{2} & y^{2} & =a^{2}+a^{2} \\
x^{2} & =2 b^{2} & y^{2} & =2 a^{2} \\
x & =\sqrt{2 b^{2}}=b \sqrt{2} & y & =\sqrt{2 a^{2}}=a \sqrt{2}
\end{aligned}
$$

The area of the rectangle is:

$$
\begin{aligned}
A_{R} & =x \cdot y & & \text { |substitute values } x=b \sqrt{2} \text { and } y=a \sqrt{2} \\
A_{R} & =b \sqrt{2} \cdot a \sqrt{2} & & \\
A_{R} & =2 a b & & \text { |using the ratio } \frac{a}{b}=\frac{2 \sqrt{2}}{3}, \text { we can write } a=\frac{2}{2} \\
A_{R} & =2 \cdot\left(\frac{2 \sqrt{2}}{3} \cdot b\right) \cdot b & & \text { |simplify and substitute the value } A_{R}=3 \sqrt{2} \\
3 \sqrt{2} & =\frac{4 \sqrt{2}}{3} b^{2} & & \left\lvert\, \cdot \frac{4 \sqrt{2}}{3}\right. \\
3 \sqrt{2} \cdot \frac{3}{4 \sqrt{2}} & =b^{2} & & \\
b^{2} & =\frac{9}{4} & &
\end{aligned}
$$

Knowing b we can calculate a by using the ratio: $a=\frac{2 \sqrt{2}}{3} \cdot b=\frac{2 \sqrt{2}}{3} \cdot \frac{3}{2}=\sqrt{2}$. We can now proceed by calculating $x=b \sqrt{2}=\frac{3}{2} \cdot \sqrt{2}=\frac{3 \sqrt{2}}{2}$ and $y=a \sqrt{2}=\sqrt{2} \cdot \sqrt{2}=2$, and finally calculate the diagonal using the Pythagorean theorem:

$$
\begin{aligned}
& d^{2}=x^{2}+y^{2} \\
& d=\sqrt{\left(\frac{3 \sqrt{2}}{2}\right)^{2}+2^{2}}=\sqrt{\frac{9 \cdot 2}{4}+4}=\sqrt{\frac{9}{2}+\frac{8}{2}}=\sqrt{\frac{17}{2}}=\frac{\sqrt{17}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{17} \sqrt{2}}{(\sqrt{2})^{2}}=\frac{\sqrt{34}}{2}
\end{aligned}
$$

